With Timon, we wanted to see the performance of DeepFaceLab’s library which is popular on youtube channels and had a fun side project.
iperov/DeepFaceLabTest on Google Colab
Open Google Colab - DeepFaceLab Colab NotebookSetup Local
Install anaconda
https://docs.anaconda.com/anaconda/install/mac-os/
Commands
browse base-directory
cd Documents/deepfakes/DeepFaceLab
conda create -n deepfakes python=3.6
conda activate deepfakes
pip install -r requirements-cpu.txt
conda install pytorch torchvision -c soumith
If you get errors in ffmpeg commands
conda install -c conda-forge ffmpeg
Edit bash profile
nano ~/.bash_profile
Add following
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
Extract data_src frames from Video
python main.py videoed extract-video --input-file WORKSPACE/data_src.mp4 --output-dir WORKSPACE/data_src
Extract data_dst frames from Video
python main.py videoed extract-video --input-file WORKSPACE/data_dst.mov --output-dir WORKSPACE/data_dst
Extract faces from data_src video
python main.py extract --input-dir WORKSPACE/data_src --output-dir WORKSPACE/data_src/aligned --detector mt --cpu-only
Extract faces from data_dst video
python main.py extract --input-dir WORKSPACE/data_dst --output-dir WORKSPACE/data_dst/aligned --detector mt --cpu-only
Clear the extracted faces which arent clear enough
Train the model using the extracted images
python main.py train --training-data-src-dir WORKSPACE/data_src/aligned --training-data-dst-dir WORKSPACE/data_dst/aligned --model-dir WORKSPACE/model --model DF --cpu-only
Swap the faces from data_dst videos frames
python main.py convert --input-dir WORKSPACE/data_dst --output-dir WORKSPACE/data_dst/merged --aligned-dir WORKSPACE/data_dst/aligned --model-dir WORKSPACE/model --model DF --cpu-only
Convert the frames to video
python main.py videoed video-from-sequence --input-dir WORKSPACE/data_dst/merged --output-file WORKSPACE/result.mp4 --reference-file WORKSPACE/data_dst.*